
IJIREEICE ISSN (Online) 2321 – 2004
ISSN (Print) 2321 – 5526

 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN ELECTRICAL, ELECTRONICS, INSTRUMENTATION AND CONTROL ENGINEERING
 Vol. 4, Issue 3, March 2016

Copyright to IJIREEICE DOI 10.17148/IJIREEICE.2016.4365 247

Engineering Applications using

Genetic Algorithm

Mashal Alenazi

University of Bridgeport, Biomedical Engineering Department, Bridgeport, CT USA

Abstract: In this paper, a variant of the Genetic Algorithm is used to place sensors optimally on a Large Space

Structure for the purpose of modal identification. The selection and reproduction schemes of the Genetic Algorithm are

modified and a new operator called forced mutation is introduced. These changes are shown to improve the

convergence of the algorithm and to lead to near optimal sensor locations. genetic programming combined with neural

networks could be incredibly slow, thus impractical. As with many problems, you have to constrain what you are

attempting to create.

Keywords: Engineering, Applications, Technology, Rastrigin.

I. INTRODUCTION

The basic theory behind genetic algorithms is quite simple.

First, a series of binary strings (chromosomes) is randomly

generated. Sections of these chromosomes, or genes, are

taken to represent variables. These genes are used as

parameters in a system (real or simulated) and the relative

success of that system when compared to a desired goal is

rated. This step is re-iterated using each of the binary

chromosomes and the suit abilities are sorted to determine

the best two. From this point on, an optimization cycle

begins. The two most suitable chromosomes are taken

from the previous run and the rest are erased (killed).

These two chromosomes are split at random points and

recombined to create a new generation of chromosomes.

A small percentage of genes is randomized (mutated) to

ensure that new solutions can arise (evolve). This new

generation is then run through the system to evaluate the

suitability of each. Just as in the case of living organisms,

environmental factors drive binary chromosomes to

continually search for the best solution for a given

environment. Occasionally a mutant arises that will either

die off, or outshine its peers to pass its genes on to future

generations. As the environment changes, so do the

factors that determine who will live and who will die.

While the presence of mutants prevents the determination

of a “perfect” solution, it also ensures that the system can

stay flexible enough to adapt to changing conditions.

The most common type of genetic algorithm works like

this: a population is created with a group of individuals

created randomly. The individuals in the population are

then evaluated. The evaluation function is provided by the

programmer and gives the individuals a score based on

how well they perform at the given task. Two individuals

are then selected based on their fitness, the higher the

fitness, the higher and the chance of being selected. These

individuals then "reproduce" to create one or more

offspring, after which the offspring are mutated randomly.

This continues until a suitable solution has been found or a

certain number of generations have passed, depending on

the needs of the programmer.

Over the last few years, there has been an ever increasing

interest in the area of artificial immune systems (AIS) and

their applications. Among the many works in this new

field of research, we can detach those of Ishida (1996);

Hunt & Cook (1996); Dasgupta (1999) and Hofmeyr

&Forrest (1999). The AIS aim at using ideas gleaned from

immunology in order to develop systems capable of

performing different tasks in various areas of research.

The Genetic Algorithm Toolbox is a collection of

functions that extend the capabilities of the Optimization

Toolbox and the MATLAB® numeric computing

environment [1].

Lymphocytes, in addition to proliferating and/or

differentiating into plasma cells, can differentiate into

long-lived B memory cells. Memory cells circulate

through the blood, lymph and tissues, and when exposed

to a second antigenic stimulus commence to differentiate

into large lymphocytes capable of producing high affinity

antibodies, pre-selected for the specific antigen that had

stimulated the primary response. Figure 1 depicts the

clonal selection principle. These algorithms enable you to

solve a variety of optimization problems that lie outside

the scope of the Optimization Toolbox.

All the toolbox functions are MATLAB M-files made up

of MATLAB statements that implement specialized

optimization algorithms. You can view the MATLAB

code for these functions using the statement type

function_name. You can extend the capabilities of the

Genetic Algorithm by writing your own M-files, or by

using the toolbox in combination with other toolboxes, or

with MATLAB or Simulink®. Learning in the immune

system involves raising the population size and affinity of

those lymphocytes that have proven themselves to be

valuable by having recognized any antigen. While doing

technology, it’s one’s desire to solve any kind of problem

using a minimal amount of resources. Hence, we need the

engineering tools to seek high quality and parsimonious

solutions. In our model, we do not intend to maintain a

large clone for each candidate solution, but to keep the

single best individual. A clone will be temporarily created,

according to the clonal selection theory, and those

progenies with low affinity will be discarded [2].

IJIREEICE ISSN (Online) 2321 – 2004
ISSN (Print) 2321 – 5526

 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN ELECTRICAL, ELECTRONICS, INSTRUMENTATION AND CONTROL ENGINEERING
 Vol. 4, Issue 3, March 2016

Copyright to IJIREEICE DOI 10.17148/IJIREEICE.2016.4365 248

II. APPLICATIONS OF GENETIC ALGORITHMS

There are many applications of genetic algorithms. A lot

of problems in real world have been solved via genetic

algorithms. In general, Genetic Algorithms can be applied

to virtually any problem that has a large search space and

considering applications of genetic algorithms it can be

viewed as problem solvers, as challenging technical

puzzle, as basis for competent machine learning, as

computational model of innovation and creativity, as

computational model of other innovating systems and as

guiding philosophy. Below given are some of applications

of genetic algorithms. A variant of the Genetic Algorithm

is used to place sensors optimally on a Large Space

Structure for the purpose of modal identification. The

selection and reproduction schemes of the Genetic

Algorithm are modified and a new operator called forced

mutation is introduced. These changes are shown to

improve the convergence of the algorithm and to lead to

near optimal sensor locations. Two practical examples are

investigated; sensor placement for an early version of the

Space Station and an individual Space Station photovoltaic

array. Simulated results are also compared with previous

results obtained by the Effective Independence method.

The Genetic Algorithm based sensor configuration

estimates the target mode response more accurately [4].

Application of the genetic algorithm requires that the

problem be coded in parameter strings (called genes), and

that there be an evaluation criterion which can determine a

fitness value associated with each gene. As usually

implemented, there are two phases to the genetic

algorithm. During the initial phase, characterized by a

highly diverse genetic pool and dominated by mating of

highly diverse parents, the parameter estimates move

rapidly towards the desired parameterization. In the

second phase, when the gene pool is highly uniform and

the incorporation of new genetic material must rely on the

mutation process, the motion of the parameters is painfully

slow. Our modification essentially monitors the diversity

of the gene pool, and forces a mass "extinction and

immigration" whenever the diversity has fallen below a

preset value. Several examples illustrate the method,

including linear and nonlinear, FIR and IIR identification.

The method is also applied to identify the parameters in

layered feed forward and feedback (recurrent) neural

network structures.

Genetic algorithms have been used in a wide variety of

optimization tasks, including numerical optimization, and

combinatorial optimization problems such as traveling

salesman problem, circuit design, job shop scheduling and

video & sound quality optimization.

Genetic algorithms have been used to model processes of

innovation, the development of bidding strategies, and the

emergence of economic markets. Genetic algorithms have

been used to model various aspects of the natural immune

system, including somatic mutation during an individual's

lifetime and the discovery of multi-gene families during

evolutionary time. Genetic algorithms have been used to

model ecological phenomena such as biological arms

races, host-parasite co-evolutions, symbiosis and resource

flow in ecologies. Genetic algorithms have been used to

study questions in population genetics, such as under what

conditions will a gene for recombination be evolutionarily

viable Genetic algorithms have been used to evolve

computer programs for specific tasks, and to design other

computational structures, for example, cellular automata

and sorting networks. Genetic algorithms have been used

for many machine- learning applications, including

classification and prediction, and protein structure

prediction. Genetic algorithms have also been used to

design neural networks, to evolve rules for learning

classifier systems or symbolic production systems, and to

design and control robots [3].

Genetic algorithms have successfully been used to evolve

various aspects of Genetic algorithms - the connection

weights, the architecture, or the learning function. You can

see how Genetic algorithms are perfect for evolving the

weights of a neural network - there are immense number

of possibilities that standard learning techniques such as

back-propagation would take thousands upon thousands of

iterations to converge to. Genetic algorithms could (given

the appropriate direction) evolve working weights within a

hundred or so iterations.

Evolving the architecture of neural network is slightly

more complicated, and there have been several ways of

doing it. For small nets, a simple matrix represents which

neuron connection which, and then this matrix is, in turn,

converted into the necessary 'genes’ and various

combinations of these are evolved. Many would think that

a learning function could be evolved via genetic

programming. Unfortunately, genetic programming

combined with neural networks could be incredibly slow,

thus impractical. As with many problems, you have to

constrain what you are attempting to create. For example,

in 1990, David Chalmers attempted to evolve a function as

good as the delta rule. He did this by creating a general

equation based upon the delta rule with 8 unknowns,

which the genetic algorithm then evolved [5].

III. AN EVOLUTIONARY SYSTEM

The clonal selection functioning of the immune system

can be interpreted as a remarkable microcosm of Charles

Darwin’s law of evolution, with the three major principles

of diversity, variation and natural selection (Cziko,

1995).The two central processes involved in the

production of antibodies, genetic recombination and

mutation, are the same ones responsible for the biological

evolution of sexually reproducing species. In these

species, the same two processes are involved in providing

the variations on which natural selection can work to fit

the organism to the environment (Holland, 1995). As a

consequence, cumulative blind variation and natural

selection, which over many millions of years resulted in

the emergence of mammalian species, remain crucial in

the day-by-day ceaseless battle to survival of these

species. Whereas adaptive biological evolution proceeds

by cumulative natural selection among organisms,

research on the immune system has now provided the first

clear evidence that ontogenetic adaptive changes can be

achieved by cumulative blind variation and selection

within organisms. The clonal selection algorithm, to be

IJIREEICE ISSN (Online) 2321 – 2004
ISSN (Print) 2321 – 5526

 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN ELECTRICAL, ELECTRONICS, INSTRUMENTATION AND CONTROL ENGINEERING
 Vol. 4, Issue 3, March 2016

Copyright to IJIREEICE DOI 10.17148/IJIREEICE.2016.4365 249

described further in the text, aims at demonstrating that

this cumulative blind variation can generate high quality

solutions to complex problems [6].

IV. RASTRIGIN'S FUNCTION

How to find the minimum of Rastrigin's function used

genetic algorithm. Rastrigin's function is defined as

The following figure shows a plot of Rastrigin's function

Figure 1: Rastrigin's Function

As the plot shows, Rastrigin's function has many local

minima the "valleys" in the plot. However, the function

has just one global minimum, which occurs at the point [0

0] in the x-y plane, as indicated by the vertical line in the

plot, where the value of the function is 0. At any local

minimum other than [0 0], the value of Rastrigin's function

is greater than 0. The farther the local minimum is from

the origin, the larger the value of the function is at that

point. Rastrigin’s function is often used to test the genetic

algorithm, because its many local minima make it difficult

for standard, gradient. based methods to find the global

minimum. To find the minimum, do the following steps:

1. Enter optim tool ('ga') at the command line to

open the Optimization Tool.

2. Enter the following in the Optimization Tool:

 In the Fitness function field, enter @rastriginsfcn.

 In the Number of variables field, enter 2, the

number of independent variables for Rastrigin's function.

The Fitness function and Number of variables fields

should appear as shown in the following figure.

While the algorithm is running, the Current iteration field

displays the number of the current generation. You can

temporarily pause the algorithm by clicking the Pause

button. When you do so, the button name changes to

resume. To resume the algorithm from the point at which

you paused it, click Resume.

When the algorithm is finished, the Run solver and view

results pane appears as shown in the following figure. The

Run solver and view results pane displays the following

information:

Figure 2: Current iteration

The Plot functions pane enables you to display various

plots that provide information about the genetic algorithm

while it is running. This information can help you change

options to improve the performance of the algorithm. For

example, to plot the best and mean values of the fitness

function at each generation, select the box next to Best

fitness, as shown in the following figure

Figure 3: Optimization Result

The points at the bottom of the plot denote the best fitness

values, while the points above them denote the averages of

the fitness values in each generation. The plot also

displays the best and mean values in the current generation

numerically at the top. To get a better picture of how much

IJIREEICE ISSN (Online) 2321 – 2004
ISSN (Print) 2321 – 5526

 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN ELECTRICAL, ELECTRONICS, INSTRUMENTATION AND CONTROL ENGINEERING
 Vol. 4, Issue 3, March 2016

Copyright to IJIREEICE DOI 10.17148/IJIREEICE.2016.4365 250

the best fitness values are decreasing, you can change the

scaling of the y-axis in the plot to logarithmic scaling. To

do so, typically, the best fitness value improves rapidly in

the early generations, when the individuals are farther

from the optimum. The best fitness value improves more

slowly in later generations; whose populations are closer

to the optimal point.

V. CONCLUSION

I proposed a general-purpose algorithm inspired in the

clonal selection principle and affinity maturation of the

immune response. The algorithm was verified to be

capable of performing learning and maintenance of high

quality memory and, it was also capable of solving

complex problems, like multi-modal and combinatorial

optimization. The major advantage of genetic algorithms

is their flexibility and robustness as a global search

method. They are "weak methods" which do not use

gradient information and make relatively few assumptions

about the problem being solved. Rastrigin's function has

many local minima the "valleys" in the plot. However, the

function has just one global minimum, which occurs at the

point [0 0] in the x-y plane, as indicated by the vertical

line in the plot, where the value of the function is 0. an

optimization cycle begins. The two most suitable

chromosomes are taken from the previous run and the rest

are erased (killed). These two chromosomes are split at

random points and recombined to create a new generation

of chromosomes. A small percentage of genes is

randomized (mutated) to ensure that new solutions can

arise (evolve).

REFERENCES

[1] De Castro, L. N., & Von Zuben, F. J. (2000, July). The clonal

selection algorithm with engineering applications. In Proceedings
of GECCO (Vol. 2000, pp. 36-39).

[2] Dasgupta, D., & Michalewicz, Z. (Eds.). (2013). Evolutionary

algorithms in engineering applications. Springer Science &
Business Media.

[3] Mühlenbein, H., & Schlierkamp-Voosen, D. (1993). Predictive
models for the breeder genetic algorithm i. continuous parameter

optimization. Evolutionary computation, 1(1), 25-49.

[4] Marler, R. T., & Arora, J. S. (2004). Survey of multi-objective
optimization methods for engineering. Structural and

multidisciplinary optimization, 26(6), 369-395.

[5] Man, K. F., Tang, K. S., & Kwong, S. (1996). Genetic algorithms:
concepts and applications. IEEE transactions on Industrial

Electronics, 43(5), 519-534.

[6] Adeli, H., & Cheng, N. T. (1993). Integrated genetic algorithm for
optimization of space structures. Journal of Aerospace Engineering,

6(4), 315-328.

